Yo	our Name:		•••••		Т	eacher:	·	•••••
		SYD	NEY TE	CHNICA	L HIGH	I SCH	OOL	
		YEAI		TENSION SESSME			ATICS	
				MARCH	2007			
			Ti	me allowed	: 70 mins			
<u>Ins</u>	tructions							
* * * *	Attempt all questions. Answers to be written on the paper provided. Start each question on a new page. Marks may not be awarded for careless or badly arranged working. Indicated marks are a guide and may be changed slightly if necessary during the marking process. These questions must be handed in attached to the top of your solutions.							
		Q1	Q2	2	Q3	TO	OTAL /	
			/17	/16		/17	/50	
	ESTION 1							
(a)	Suppose that $z = 2 - i$. 2 Express the following in the form $x + iy$ where x and y are real numbers:							
		$\overline{(iz)}$	is in the form	i w i iy wilei	y and y are	Tour Huir		
	ii)	` ,						
(b)	i) Express $-1-i\sqrt{3}$ in modulus argument form.							
	ii) Henc		/ \>					

(c) i) Simplify $(-2i)^3$.

ii) Hence or otherwise find all complex numbers, z, such that $z^3 = 8i$. Express your answers in the form x + iy.

(d) Sketch the region where the inequalities $|z-3+i| \le 5$ and $|z+1| \le |z-1|$ both hold.

4

(e) Im P $A = z_1$ $B = z_2$ O Re

The points A and B in the complex plane correspond to complex numbers z_1 and z_2 respectively. Both triangles OAP and OBQ are right-angled isosceles triangles.

- (i) Explain why P corresponds to the complex number $(1+i)z_1$.
- (ii) Find a similar expression for the complex number corresponding to Q.
- (iii) Let M be the midpoint of PQ. Give an expression in terms of z_1 and z_2 for the complex number that corresponds to M.

QUESTION 2 (Begin on a new page)

- (a) If 1 3i is a root of the equation $2z^3 3z^2 + 18z + 10 = 0$
 - (i) Explain why 1 + 3i is also a root.
 - (ii) Find all roots of the equation.
- (b) z_1 and z_2 are complex numbers such that $\frac{z_1 + z_2}{z_1 z_2} = 2i$.

- (i) Copy the diagram onto your answer page. On the diagram show the vectors $z_1 + z_2$ and $z_1 z_2$.
- (ii) Show that $|z_1| = |z_2|$.
- (iii) If the angle between the vectors z_1 and z_2 is α , show that $\tan \frac{\alpha}{2} = \frac{1}{2}$.
- (c) (i) Solve $z^5 = -1$ over the complex field showing the roots on an Argand diagram. 2
 - (ii) If ω is the complex root of $z^5 = -1$ with the smallest positive argument, show that the other complex roots are $-\omega^2$, ω^3 and $-\omega^4$.
 - (iii) Using ω as in part (ii), simplify $(1 \omega + \omega^2 \omega^3)^8$.

QUESTION 3 (Begin on a new page)

- (a) Sketch the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$. State the eccentricity and show clearly the coordinates of the foci and the equations of the directrices.
- (b) The point $C(x_0, y_0)$ lies outside the ellipse in (a). Give a full geometrical description 3 of the locus of the point C if the chord of contact from C always passes through the point (2, 2).
- (c) Prove that the equation of the normal to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at the point $P(x_1, y_1)$ is $\frac{x_1 y}{a^2} \frac{xy_1}{b^2} = \frac{x_1 y_1}{a^2} \frac{x_1 y_1}{b^2}$.
- (d) The tangent to $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at the point $P(x_1, y_1)$ cuts the y axis at A

 while the normal at P cuts the y axis at B. If S is a focus of the ellipse, show that $\angle ASB = 90^\circ$. (You do *not* have to derive the equation of the tangent.)
- (e) Deduce the geometrical relationship between the points A, P, S and B in part (d).

1

End of Paper

